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Abstract

This paper presents buckling and postbuckling re-
sults for simply supported alumi_mm plates loaded

in compression. Buckling results have been plot-
ted to show the effects of thickness oil the buckling

stress coefficient. Buckling results are given for var-

ious length-to-width ratios. Posttmckling results for

plates with transverse shearing flexibility are com-

pared with results from classical theory for various
width-to-thickness ratios. The plates are considered

to be long with side edges simply supported and

free of stress. The plates are subjected to a lon-

gitudinal compressive end-shortelting displacement.
Characteristic curves indicating 1.he average longi-

tudinal direct stress resultant as a function of the

applied displacements are calculated based on four
different theories: classical Von Karman theory, first-

order shear deformation theory, higher order shear

deformation theory, and three-dimensional flexibil-

ity theory. Present results indicat{' that the three-
dimensional flexibility theory giv¢s the lowest [)lick-

ling loads and, therefore, the most accurate results.

The higher order shear deformation theory has fewer
unknowns than the three-dimensional flexibility the-

ory but is not as accurate. The, figures presented

show that for postbuckling small differences occur

in tile average longitudinal direct stress resultant, in
the maxinmm values of the transverse stress resul-

tant and shear stress resultant, allot in the maximum

transverse displacements calculated when the effects

of transverse shear flexibility are included in the var-

ious theories.

Introduction

Tile increasing interest in minimum weight de-

signs for aeronautical and aerospace structures has

generated substantial interest in the analysis of the
elastic stability and postbuckling behavior of struc-

tures subjected to compressive in-plane loads. For

thin homogeneous plates, classical plate theory pre-
dicts deformations and in-planv stresses that are

corot)arable to those of three-dim(msional elasticity.
Transverse stresses in thin plates are generally small

compared to in-plane stresses, and thus both clas-

sical theory and first-order shear deformation the-

ory give satisfactory results. However, since both
theories are two-dimensional, they are not accurate

enough to predict transverse stresses directly. Accu-
rate nonlinear theories are requir(_(l for the analysis

of thick plates, in which these transverse stresses be-

come more significant.
It is often sufficient to use an accurate non-

linear two-dimensional theory to solve some three-

dimensional nonlinear elasticity problems. One such

theory has been derived in reference 1 for laminated

and thick plates with three-dimensional flexibility ef-

fects. 'Fhis theory can predict directly the trans-
verse stresses as well as the in-plane stresses by using

trigonometric terms in addition to the usual constant
and linear terms representing through-the-thickness

variation of the displacements. However, this theory

cannot satisfy the surface boundary conditions of a

plate.

The purpose of the present paper is to present the
results of an investigation of the buckling and post-

truckling response of isotropic plates h)aded in com-

pression using classical nonlinear Von Karman theory
and ttuee nonlinear transverse shearing theories and

to compare results for these four theories for (lifter-
ent values of plate width-to-thickness ratios in th(,

postbu,'kling range. Tile nonlinear transverse shear-

ing theories arc first-order shear deformation theory

(refs. 2 and 3), higher order shear deformation the-

ory (ref. 4), and three-dimensional flexibility theory

(ref. Ii. The present derivation of the higher or-
der shear deformation theory has the advantage of

having nonlinear through-the-thickness terms with-

out coJ,tributing additional unknowns to first-order
shear (ieformation theory. In addition, it satisfies the

surfae_ boundary conditions of the plate. The es-
sential difference between the theories ix the use of

cubic _r trigonometric terms in addition to the con-
stant and linear terms that represent the through-

the-thickness variation of tile in-t)lane displacements.

The present paper presents the derivation of the non-

linear plate equations for buckling of plates loaded

in axial compression for both higher order theories.

This paper also presents postbuckling results for tile

average hmgitudinal compressive direct stress resul-
tant and maxinmm stress resultants as a function

of the applied displacements, and maxinmm out-of-

plane displacement as a flmction of the applied dis-

placement. The plates considered in this paper are
long with side edges simply supported, free of nor-

real stress, and free to slide along the edges to give
constant strain. Results of the four theories are for

aluminum plates loaded in uniaxial compressive end

shortening.

Symbols

All , A12, A22, A33,

A44, A55, A66

a,b,h

Cn, ('12, C22, Caa,
C44, ('55, C66

plat(.' extensional
stiffnesses

dimension of rectangular

plate parallel to X, Y,

and Z axis, respectively

stiffncsses used in

Hooke's law



Dll, D12, D22, D66

E

H44, h4, ,112, ,122,

J66, K12, K22, K66

Lx, Ly, Lz, Lyz, Lzz,

Lxy, M_, My, m_

N:r, Nv, Nz v

gyz _ N.7;z

N,/:,av

plate bending stiffnesses

Young's modulus

plate stiffness components

moment resultants in the

plate

in-plane stress resultants

in tile plate

transverse stress resul-

tants in the plate

average axial stress
resultant

ordinary differential equations and variationally con-

sistent boundary conditions, which are solved by a
computer program based on Newton's method.

The displacements considered for each theory are

Classical Kirchhoff theory:

Z}u(x, y, z) = u°(x, y) - w,° (x, v)

Z

*,(*, v, z) v°(x, v) _,,_ (x, v)

w(_, v, z) = w°(x, v)

(1)

First-order shear deformation theory:

value of Nx,av at buckling

functions of y defined in

appendix

applied end-shortening

displacement in x, y, and

z direction, respectively

plate coordinates

functions of x and y

defined in the appendix

e,r, ev, ez, strains in the plate

7yz, 7xz, 7xy

)_ buckle half-wavelength

p Poisson's ratio

stresses in the plate

Theory

A brief outline of the derivation of the four differ-

ent theories compared in this paper is presented in

this section. The derivation of equations using clas-
sical Kirehhoff theory ha_u been presented in refcr-

ence 5. The derivation of equations using first-order
shear deformation theory has been presented in refer-

ences 2 and 3. The two higher order theories are not

given in detail elsewhere, so they arc presented in the

appendix. The general.ai)proach used in deriving the
equations to bc solved is the same as in reference 6.

First, the displacement functions for each theory are

identified. The nonlinear strain-displacement rela-

tions and the assumption that the displacements are

sinusoidally periodic along the length of the infinitely
long plate arc incorporated. Stress-strain relations

are defined for a "specially orthotropie" plate, and
application of the principle of virtual work leads to

_(*, v, _) = _°(*, y) + _ (x, v)

Z

.(x, v, z) .°(x, v) + ._(_, v) _ (2)

w(:_,>_) w°(_,v)

Higher order shear deformation theory:

,O Z

+ _,_ (*,v)

,' ,/'(x, _) :gv(x,u, _) = '_ (*,y) +

+ w,, (_,u)

w(_:,y, _) - w°(_,v)

Three-dimensional flexibility theory

h ,s . 71-z /

ll(g y z)=?l°(g,y)+?ta(il?,y) @ll (£',y) Slll _

z 7rz

.(_,v,_) ."(*,,_) + <(*,u)_ + v,'(_-,y) ,<nT (4)

w(x,v,_) ,,/'(*,u) + ,,,'(..y)_o_ _z
h

Both the classical Kirchhoff and the first-order shear

deformation theories have in-plane deformations u

and v which are linear in z. Classical theory, however,
has the additional assumption that there is zero

transverse shearing (Txz = 7yz = 0), thus eliminating
u a and v a in favor of derivatives of w °.



Higher order shear deformation theory considers

in-plane deformations u and v which are cubic in z.

As explained in reference 6, the squared-in-z term
vanishes and the cubic term does not introduce any

new variables beyond those that appear in first-order

shear deformation theory if the boundary conditions

are satisfied at z = +h/2. The three-dimensional

flexibility theory considers trigonometric terms in

u, v, and w beyond the expressions considered for the
deformations of first-order shear deformation theory.

In this paper, the superscript o corresponds to the
constant-in-z terms, the superscript a corresponds to

the algebraic-in-z terms, and the superscripts s and

c correspond to the trigonometric-in-z terms.

To account for the applied displacement U

_°(x' Y)-- -u_-a + U_(x, y) }
vo(x, y) _- v_(y) + v,/'¢x,y)

(5)

where numbered subscripts for loads, displacements,

and curvatures indicate a y-dependence only. To

satisfy the assumption that the displacements are

sinusoidally periodic along the length x

2;,T 3: }

u_ = _7(y)sin -;-

v2° _(y) cos 2_:_

(6)

All the other u coefficients can be expressed as func-

tions of y multiplied by cos rrx/A, where A is the

half-wavelength of the buckled plate. All the other
v and w coefficients can be expressed as functions of

y multiplied by sin rcx/A. The strain-displacement
relations used are

12/
ex = U,x + _W,x

1 2
ey = V,y +_W,y

C.z _ W_Z

!

_yz = %z +W,y [

I_xz = U,z +W,x

"Yxy = U,y -'}-V,x +W_x W,y

(7)

Hooke's law relating stresses to strains for a "spe-

cially orthotropic" material is used here

,'Tj. 1

_i I
(T=

Cll

C12

0

0

0

0

Cl2 0 0 {1

C22 0 0 l}

0 C33 0 0

0 0 C44 0

0 0 0 C55

0 0 0 l)

,) I

0 ey
0 z

(s)
(} _yz

(='66 _x_ I

Ordinary differential equations and variationally

consistent boundary conditions are derived using the

principle of virtual work, and the equations are solved

by Newton's method in a computer program dis-
cussed in reference 7. The principle of virtual work

applied to the internal forces of a three-dimensional

body considered here is

"(_Lbf hI2611 = : (Crx& z + a,_ +5%+ crz &z
Jo a-ht2

+ ryz _52yz + _-zz 63xz + _r_j 6%.y) dzdydx
(9)

and tTm set of simple support boundary conditions at

y=(}and y=bused are

'tt = U

:% = 0
W _0

AI_ = 0

(lo)

The half-wavelength A of the assumed deformations

for the long plates considered is chosen to minimize

the buckling load for each given applied deformation.

Results and Discussion

The results obtained in this study for aluminum

plates with geometry as shown in figure 1 are based

on the mechanical properties of Young's modulus

E = 10.7 x 106 psi and Poisson's ratio # = 0.33.

Buckling results presented in figure 2 for an alu-

minum plate show the variation of buckling stress
coefficient with width-to-thickness ratio b/h given by

the four theories for a range of length-to-width ra-

tio a/b. The differences in the buckling results for

aluminum plates with width-to-thickness ratios less
than 10 illustrate the need to include the effects of

tram verse shearing in determining the compressive

buckling stress.
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Characteristiccurvesfor differentvaluesof b/h

are presented in figure 3 for the postbuckling re-
sponse of rectangular aluminum plates loaded in

compression. For a b/h value of 100, only one curve

is shown, since the corresponding results for each
theory are approximately the same. For lower val-

ues of b/h, figure 3 shows that the normalized end-

shortening U is larger for a shear deformable plate
than for its infinitely rigid counterpart for a fixed

value of normalized stress resultant Nx,av. Present
results indicate that three-dimensional flexibility the-

ory gives lower buckling loads and therefore more ac-

curate results. The shear deformation theory results

are converged solutions for all values of b/h inves-
tigated, and this theory has the advantage of fewer

unknowns than the three-dimensional theory. Re-

sults for the normalized stress resultants Ny,max and

N:r_j,max, for different values of b/h, are presented
in figures 4 and 5, respectively, and corresponding

results for the normalized maximum deflection '_/?inax

are presented in figure 6. The results presented in fig-

ure 4 show that the higher order shear deformation

theory gives the lowest value of normalized Ny,max
for a given value of normalized end-shortening U.

The results presented in figure 5 show that. the

normalized Nxy,max as a function of the normalized
end-shortening U is nearly independent of the width-

to-thickness ratio b/h for the eases investigated. Re-
sults for the normalized maxinmm deflection Wmax
show that the value of the deflection becomes in-

creasingly dependent upon the width-to-thickness ra-

tio b/h as the value of the normalized end-shortening
U increases.

Detailed numerical results for the four theories for

the range of b/h ratios investigated for the normal-

ized end-shortening displacement parameter U = 14

are presented in tables I through IV. The value of this
applied displacement parameter equal to 14 is well

into the postbuckling range. Results are presented in

each table for the applied average in-plane stress re-
sultant Nx av the maxinmm values of the other stress

resultants, and the maximum transverse displace-

ment. Table I shows that for b/h = 100, there is
very little difference in the results given by the dif-

ferent theories. Table II indicates that as the b/h
ratio decreases, that is, as the width of the plate
narrows, small differences between the theoretical re-

sults occur. In tables III and IV, these differences

become more pronounced, and although the three-

dimensional flexibility theory does give more accu-

rate results, the numerical procedure has difficulty
converging for thicker plates. The omission of the

first-order shear deformation theory results presented
in tables III and IV and the omission of the three-

dimensional flexibility theory results presented in ta-

ble IV correspond to those values of b/h for which

results were not obtained. An explanation for this
inability to obtain results has not been determined.

The principle of virtual work requires only that

the geometric boundary conditions be satisfied. The

inclusion of additional terms in the representation of

the through-the-thickness variation of the in-plane

displacements will lead to convergence and the sat-

isfaction of natural boundary conditions in the limit

if a complete set of terms is used. An alternate ap-

proach is to use terms that satisfy the boundary con-
ditions. A complete set of these terms also leads

to convergence. For the present problem, the three-

dimensional flexibility theory uses terms that do not

satisfy the natural boundary conditions. In the

higher order shear deformation theory, coefficients of

u and v of the a,ssumed displacements in equation (3)

are chosen such that "_xz = 0 and ?_z = 0. The coef-
ficients are written in terms of the existing unknowns
uCz, v a, and w ° in a form which satisfies the natural

boundary conditions at the top and bottom surfaces
of the plate. Comparisons of results are valid whether

or not natural boundary conditions are satisfied.

Concluding Remarks

This paper presents buckling and postbuckling re-
sults for simply supported aluminum plates loaded

in compression. The buckling results have been plot-

ted to show the effects of varying plate width and

thickness on the buckling stress coefficient. Buckling

results are given for various plate length-to-width ra-

tios. The buckling results for aluminum plates with
width-to-thickness ratios less than 10 illustrate the

need to include the effects of transverse shearing

when determining the compressive buckling stress.
Postbuckling results for plates with transverse shear-
ing flexibility are compared with results from classi-

cal theory for various width-to-thickness ratios. The

plates are considered to be long with side edges sim-

ply supported and stress free, and the plates are sub-

jected to a longitudinal compressive end-shortening

displacements. Characteristic curves indicating the
average longitudinal direct stress resultant as a func-

tion of the applied displacements are calculated based
on four different theories: classical Von Karman the-

ory, first-order shear deformation theory, higher or-

der shear deformation theory, and three-dimensional

flexibility theory.
Present results indicate that the three-

dimensional flexibility theory gives the lowest, buck-
ling loads for the four theories considered, and there-

fore the most accurate results. The higher order

shear deformation theory has fewer unknowns to de-

termine than the three-dimensional flexibility the-

ory but is not as accurate. The figures presented

4



showthat, for postbuckling,smalldifferencesoc-
cur in tile averagelongitudinaldirect stressresul-
tant, in tile maximumvaluesof the otherstress
resultants,andin themaximumtransversedisplace-
mentscalculatedwhentheeffectsoftransverseshear
flexibilityare includedin thevarioustheories.Be-
causeofsmalldifferencesin theresultsfromthevar-
ioustheories,resultsaregivenin lamesfor the ap-
pliededgedisplacementsintotheposlbucklingrange.
Theprincipleof virtual workusedin this studyre-
quiresonly that tile geometricboundaryconditions
aresatisfied.Themostaccurateresultsareobtained
fromthe three-dimensionalflexibility theorywhere
enoughtermsareselectedto satisfythegeometric
boundaryconditionsbut not the naturalboundary

conditions.In the higherordersheardeformation
theory,it is possibleto selectcoefficientsof the as-
sumeddisplacementssuchthat the transverseshear
strains_'zz= 0 and"Yyz= O.Thesecoefficientsarc
written in termsof the existingunknowndisplace-
mentsu _, v a, and w ° in a form which satisfies the

natural boundary conditions at. the top and bottom

surfaces of the plate. In this manner, results are ob-

tained from the higher order shear deformation the-

ory that are nearly as accurate as those obtained from

the three-dimensional flexibility theory, but with con-

siderably fewer unknowns.

NASA Langley Research Center
Hampton VA 23665-5225
May 25, 1990
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Appendix

Derivation of the Governing Equations for the Higher Order Shear Deformation

Theory and the Three-Dimensional Flexibility Theory

Governing differential equations are derived in more detail in this appendix for the two higher order theories
considered in this paper.

Higher Order Shear Deformation Theory

The displacements used in this theory arc given by equations (3) as

4h [ua(x,y).(x, _, z) = _°(x, y) + _a(x, y) - _- h

v(x,y,z) = v°(x,y) + {va(x,y) - 4--h3[va(h'Y)

w(x, _, z) = w°(x, _)

J Z)2} Z /

+ W,x° (_, y) (_

--+w°(x,y)] (z'_2} z

Substitution of equations (3) into equations (7) gives the strain-displacement relations

(A1)

6

1 02 z 4 (z_3

o 1 02 ,a z 4(z)3(V,y o h)ey=v,y+_w,y +z,y_ 3 h +W,yy

o o o o ( _ a) z 4(h)3( a a o )7xy = U,y +V,x +w,x W,y + u, +v x -_ - _ u,y +v, x +2W,xy h

Tile assumption of sinusoidat periodicity along the length leads to

uO _U x- 27rx 1= + u_(y) sina _--

I

7rx

_" _?(_) Cos_-

wo = _l'(y)sin "--_

27rx
v° = _8(y) + v_(y) cos _-

va v_ (Y) sin rrx

(A2)

(A3)



Stresses are determined from Hookes law according to equation (8), and stress resultant forces and moments

are determined by the following integrals through the thickness

2rrx [h/2
Nz0 _- Nx2 cos_ = J-h�2 ax dz

2_rx _ fh/2
N9o ._- Ny 2 sin _ J-h/20y dz

Nyzo Sin _- =d_h/2 ryz 1 - h2 ]
dz

4z 2 )
_x -_ [ht2 1 - dz

Nzzo cos _- J-ht 2 T:rz

27rx fh/2
Nzy2 sin _- = J-h�2 rxy dz

_x = fh/2
Mxo sin _- J-hi2 axz dz

(z)3rex = fhl2 4 herr dz
Mxl sin _- J-h�2 -3 _

7rX = [h/2

My 0 sin _- J-h�2 ayz dz

7rx hi2 4 boy dz
M m sin -_ J-h�2 - 3

_rx [h/2
l_Ixy 0 COS _- = J-h/2 TxYZ OZ

(z)3TrX = [h/2 4 hTry dz

l_lxyl cos _- J-h�2 3

(A4)
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0 I

where the Cij are the stiffnesses in equation (8). Using the definition f12 = w 1 gives the following two differential

equations, which complete the set of equations (14 equations with 14 unknowns) without squares of derivatives

of the unknowns:

a2,- - _- - {v22(M,0- My,)- D22M_l+ (_22V,_- V22_,2)hX

_ . [u{rr D22B22 - D22)

(A7)

Squares of the derivatives are not retained in the computer progcam used.

The boundary conditions at y = 0 and y = b that corresporul to equations (10) are

'4=_?=° }

Ny 0 = Ny 2 = 0

u_,_'= 0

My o = M.u I = 0

(A8)

Three-Dimensional Flexibility Theory

The displacements used in this theory are given by equations (4) as

u(x .0, z) = u°(x, y) + ua(x, Y) h + us(x' y) sin _-

7rg

,,(:,.,v,z) vO(x,y) + _(_,V)h + ,,'_(x, v) sin T

7rg

w(_:,v, z) = ._o(., v) + we(*,v) c(,.-g

(A9)

Substitution of equations (4) intx) equations (7) and neglecting the nonlinear terms invoMng w c gives the

strain-displacement relations

o2 a Z s 7rzea.=u,l_'. _- w, +ua:_ +u,xsin h

2' 1) s 71"Ze.u = z,'_; 4- u,,; 2 +v,; _ + ,ysin _-

h 7r2"fz = -- IU c siI1 h

_ = <', +,4 +_o w4 + _,_ +_,_ i; + _';; +_" sin T

q O

"yxz=tc-.+_-+ w,_+_u cos h

V a ) 7I'Z
o+(__v _+ _ cos---

7_z = _-+w,y \h w"u h

(A10)



Theassumptionof sinusoidalperiodicityalongthelengthleadsto

uO _U x_ 2rrx= + uT(y)sina -2-

7rx
u° = u?(y) cos--

A

us = _(_) cos_x
A

v°=v_(y) +v_(y)cos 2"x
-5-

v a = v_(y)sin 7rx
A

v s =v_(y)sin _x
A

w ° = w_(y)sin 7rx

w_= _7(y)sin "--_
A

(All)

Stresses are determined from Hooke's law according to equation (8), and stress resultant forces and moments
are determined by the following integrals through the thickness

2_x fh/2 o dzNz,, + Nx_ cos -- = a x
A J-h/2

2_X : fh/2
Ny 2sin _ J-t_/2 ay dz

h/2N._, = _ dz
J - h/2

h/2Nxzl = 7"02 dz

J -hi2

2_rx = fh/2
N_._ sin _- S-h/2 T_°ydz

Mzi = [axa(h ) +a_sin z dz
S-h/2

7rz z

Myl = fht2 [o_(_)+@sin_-] _dz
J -h/2

Lx, = [a_(h)+a:sin sin dz
,s_ht2 h

fh/2 lay (h) + a_sin _] sin 7 dz
LYi = J-ht2

ht2Lzi = azs sin2 7rz
J-ht2 _ dz

= fh/2 7rZ
Ly_ s-h/2 r_ cos 2 _- dz

h/2 7rzL_:zi = rcz cos 2 dz
S-ht2

F[ 7]a s 71"Z

Lxyl J -h/2 TxY -1- rxy sin sin _- dz

(A12)
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The stiffnesses of the plate are given by

fh/2
Aij = J-hi2 Cij dz

fh/2
Dij = J-hi2 Cijz2 dz

= fh/2 7rz
Hij J-h�2 Cij cos _- dz

= fh/2 7rz
Jij J-h�2 Cijz sin _- dz

= fh/2 7rz
Kij J-h�2 Cij sin2 h- dz

fh/2 7rz

Iij = I-h�2 Cij cos 2 _- dz

(A14)

where the Cij are the stiffnesses in equation (8). The definition/31 = w_t is not used in this theory because of
the difference in the unknowns in the theories. Instead, the following definition of/31 is used

.i=:{___+ [_____4(Q_ 17rN o'_ L..,]/(A44 H44 }/[ Ny. /(A44 H44_]_ xy2Wl) -- /44 J /44 ) 1 + (A15)
H44 2H44 / \ H44 144 ,] J

which results in the completely defined set of equations (16 equations with 16 unknowns) without squares of
derivatives of the unknowns, which are not retained in the computer program used.

The boundary conditions used at y = 0 and y = b that correspond to equation (10) are

Nyo = Ny2 = 0

= = o

J,I_= L_l ----0

(A16)
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Table I. Stress Resultants and Transverse Displacement for b/h = 100 at t_ = 14

Theory N x,av N y,max N xy,max Wmax / h

Classical

First-order shear

deformation

Higher order shear
deformation

Three-dimensional

flexibility

7.63970

7.65298

7.65165

7.61673

2.69335

2.70474

2.73821

2.67665

1.95480

1.95260

1.97692

1.96602

0.15466

.15465

.15571

.15468

Barred quantities are nondimensional quantities given by

= U(All - A212/A22)b 2 Nzav Nx'avb2 --
a__2 ' - _7r2 Ny,m_x-

Ny,ma_ x b2

v/_D22 rr2 gxY, max --

Nxy,max b2

__r 2

Table II. Stress Resultants and Transverse Displacement for b/h = 20 at tU = 14

Theory N x,av N y,max N xy,max Wmax / h

Classical

First-order shear

deformation

Higher order shear
deformation

Three-dimensional

flexibility

7.63970

7.55385

7.60060

7.51680

2.69335

2.65594

2.64025

2.68240

1.95480

1.97912

1.92883

1.97278

0.15466

A5416

.15255

.15389

t Barred quantities are nondimensional quantities given by

= U(All - A22/A22)b 2 Nz av N_'avb2 --
ax/-D--_l D22 7r2 ., - _ 7r2 Ny,max -

-- gxy,max b2

Nxy,max = V/_ D2271"2
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TableIII. StressBesultantsandTransverseDisplacementfor b/h = 10 at t{7 = 14

Theory N z,av N _,m, _ N z_,max Wmax/h
1.95480 0.15466

1.92198
Classical

Higher order shear
deformation

Three-dimensional

flexibility

7.63970

7.37103

7.20968

2.69335
. ,)2.533.4

2.706,18 1.99174

.15039

.15011

t Barred quantities are non(limensional quantities given by

= U(All - A212/A22)b 2 :_z av-- Nx'avb2 Ny,,,_a
a_D22 7r2 " Dv/-D_D22 7r2

Ny,max b2

D22 7r2
Nxy.max -

Nxy.max b2

X/_ 1D22 7r2

Table IV. Stress Resultants and Transverse Disl)lacement for b/h = 5 at t _7 = 14

Theory Nx,av Ny, _x 5'_xy,max Wmax/h

Classical 7.63970 2.69335 1.95480 0.15466

Higher order shear 7.26598 2.4_ il 1.97121 .14796

deformation

t Barred quantities are nondimensional quantities given b,,

= U(All - A212/A22) b2 _v Nx, avb2 -- Ny'maxb2
av/_ D22 7r2 _%z,av - _ D22 7r2 N_,nmx - Dvf_D22 7r2

Nxy,max --

T 2
_x_,max b

Dv/_ 1D22 7r2

15
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Figure 1. Plate geometry.
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Figure 2. Critical axial stress resultant Nz.cr versus plate length-to-width ratio a/b for different width-to-

thickness ratios b/h and different theories for aluminum plates of finite length.
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Figure 3. Average axial stress resultant Nz,av versus applied end-shortening U for different width-to-thickness

ratios b/h and different theories for aluminum plates of infinite length where U/a is finite.
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Figure 4. Maximum transverse stress resultant Ny.max versus applied end-shortening U for different width-to-
thickness ratios b/h and different theories for almninum plates of infinite length where U/a is finite.
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Figure 5. Maximum shear stress resultant Nzy.max versus applied end-shortening U for different width-to-

thickness ratios b/h and different theories for aluminum plates of infinite length where U/a is finite.
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Figure 6. Maximum out-of-plane displacement Wmax versus applied end-shortening U for different width-to-

thickness ratios b/h and different theories for aluminum plates of infinite length where U/a is finite.
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